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Thermal instability of two-dimensional 
stagnation-point boundary layers 

By K. CHENt,  M. M. CHEN AND C. W. SOHNS 
Department of Mechanical and Industrial Engineering, University of Illinois, 

Urbana, Illinois 61801 

(Received 13 August 1982 and in revised form 15 February 1983) 

A study of thermal instability for the two-dimensional stagnation flow for Prandtl 
numbers ranging from 0.7 to infinity is presented. The analysis represents an exact 
solution since neither the boundary-layer approximation nor the parallel-flow 
assumption was invoked. Of particular interest is that the critical Rayleigh number 
and the critical wavenumber, when defined on the basis of the thermal boundary-layer 
lengthscale, are found to be relatively insensitive to the Prandtl number for the range 
of Prandtl numbers studied. 

1. Introduction 
When a rising hot plume impinges on a cold boundary, or when a descending cold 

jet impinges on a warm boundary, a stagnation boundary layer is formed which may 
become gravitationally unstable. The problem can be viewed as the prototype of 
thermal-instability problems for forced convection boundary layers. This is because 
the stagnation boundary layer, having a uniform thickness, possesses mathematical 
properties that render an exact analysis possible. In  contrast, the study of boundary 
layers with variable thicknesses generally must invoke some form of parallel-flow 
assumption (Sparrow & Husar 1969; Lloyd & Sparrow 1970; Cheng & Wu 1976; Chen 
& Mucoglu 1979). A study of the thermal-instability problem for the stagnation 
boundary layer will thus provide an interesting basis of comparison for similar 
problems for all boundary layers. The problem is also a component of a model of 
high-Rayleigh-number convection above a heated surface previously proposed by one 
of the authors (Chen 1971); 

Previous studies on thermal instability of shear flows (e.g. Chandra 1938; Ingersoll 
1966) have consistently shown that the least-stable mode for moderate-to-large 
Prandtl numbers consists of non-oscillatory rolls with axes parallel to the direction 
of flow a t  the surface. The study of oscillatory modes will thus not be taken up in 
this communication. For two-dimensional stagnation boundary layers, these rolls are 
parallel to each other and of constant height and width, permitting the reduction of 
the instability problem to a one-dimensional eigenvalue problem without further 
simplifying assumptions, as will be shown later. For axisymmetric stagnation 
boundary layers, the streamwise rolls correspond to cells whose widths increase 
radially. Consequently, exact solutions will no longer be possible. At large distances 

t Present address : Department of Mechanical and Industrial Engineering, University of Utah, 

$ Present address: Construction Engineering Research Laboratory, U.S. Army Corps of Engin- 
Salt Lake City, Utah 84112. 

eers, Champaign, Illinois 61820. 



50 K .  Chen, M .  M .  Chen and C .  W .  Sohn 

from the centre, however, the behaviour of the axisymmetric stagnation flow is 
expected to approach the two-dimensional stagnation flow. 

2. Formulation 
The coordinate system employed is shown in figure 1. Note that z is the vertical 

coordinate measured from the surface and x and y are in the streamwise and spanwise 
directions respectively. 

The intrinsic length and velocity scales for viscous stagnation flow are (u/a)i and 
(ua); respectively, where u is the kinematic viscosity and a is the free-stream velocity 
gradient au,/az. Introducing the set of scales (u/a)i, ( u u ) ~ ,  t,-t, ,  p a ,  l / a  for length, 
velocity, temperature, pressure and time, the non-dimensional governing equations, 
based on the assumption of linear equation of state and Boussinesq approximation, 
are 

v*u* = 0, (1) 

(2) + u*. VU* = -Vp* + V2u* + Gr*kt*, 

where the velocity u = (u, Y, w), p is the pressure, t ,  and t ,  the wall temperature and 
the free-stream temperature respectively, 7 the time, p a constant density and k the 
unit vector in the positive z-direction. The two parameters appearing in these 
equations are the Prandtl number 

V 

a 
Pr = - (4) 

FIQURE 1. The model. Also shown are the temperature distribution and the coordinate system. Note 
that the figure shows a warm surface under a cool fluid, in conformity with common practice in 
thermal-stability studies. The figure would be inverted if the problem is viewed as the impingement 
of a warm plume on a cool ceiling. 



Thermal instability of two-dimensional stagnation $ow 51 

and the Grashof number defined with respect to the length ( v / u ) ~ ,  

where g is the gravitational acceleration, a and are the thermal diffusivity and 
coefficient of thermal expansion of the fluid, and At is the difference between t, and 
t m .  

The asterisk indicates that these dimensionless quantities are defined on the basis 
of the viscous scale and should be distinguished from the thermal scale to be discussed 
later. Note also that we have chosen a Grashof-number normalization instead of the 
more familiar Rayleigh-number normalization. .This is done because Gr* based on the 
length (v/a)i  coincides with the Rayleigh number based on the thermal boundary-layer 
scale, to be discussed later, and is thus a more suitable indication of stability. The 
base flow of the instability problem is the classical Hiemenz flow 

a* = x*$/(z*), 

B* = 0, 

w* = -$ (z * ) ,  

t* = e ( q ,  
where $ and 8 are solutions of the systems 

Solutions for (lo)-( 13) are widely tabulated or can be easily generated by computation 
as is the case here. 

For small disturbances, the disturbed flow is characterized by 

Furthermore, we shall assume non-oscillatory parallel modes as discussed above : 

(C*, v"*, $*, p"*, f*) = (x* U ,  V ,  W ,  P,  T)e'*r*+ik*Y*, (19) 

where U ,  V ,  W ,  P and T are functions of z*. Note that the amplitude of C* depends 
linearly on x* as in the case of a*. The appropriateness of this form can be verified 
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by substitution into (1) - (3) .  After linearization and setting CT* = 0, the following set 
of equations for the amplitude functions is obtained : 

U + i k * V +  W' = 0, (20) 

(21)  

(22 ) 

(23 1 

- $ T +  we' = (24 1 

2U$'-$u'+ W$" = -k*2U+ U", 

- $ W ' - $ f W  = - P +  W"-k*2W+Gr*T,  

- $ V  = -ik*P-k*ZV+ V'', 

- k*2T+ T" 
P r  . 

Eliminating V and P from the above equations results in three real equations for 
U,  W and T :  

V + $ U ' - ( 2 $ ' + k * 2 )  U-$"W = 0, (25)  

$W' W + $ W + ( $ ' - 2 k * 2 )  w - k * 2  

+(k*4-k*2$' )  W +  U"'+$U"+($'-k*2) U'-k*2Gr*T = 0, (26)  

T " + P r $ T - k * 2 T - P r 8 f W  = 0. (27 ) 

The boundary conditions are 

U =  W =  W ' = T = O  ( ~ * = O , C O )  

3. Equations in stretched coordinates for large Pr 
The only source of instability in the present problem is the buoyancy force existing 

near the wall. It decays very rapidly beyond the thermal boundary layer. Based on 
this fact, a normalization based on a thermal boundary-layer scale length rather than 
the viscous scale (v /a) i  should be more appropriate, especially for large Pr. Since it 
is well known that as P r  increases, the ratio of the thermal boundary-layer thickness 
to the viscous boundary-layer thickness approaches Pr-f, such a thermal scale is 
(v/a)iPr-) with the corresponding velocity scale (ua)iPr-i. We may thus define 
stretched variables, denoted by the superscript 0, as follows: 

0 -t--t, t -- 
At 

The velocity and the temperature can be separated into the base-flow solution and 
the perturbation solution as before. The equations governing the ' stretched ' base-flow 
velocity function $ O ( z 0 )  and the temperature function Bo(zo) are 

where 
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(Go,  P,  Go, Po,  8') = (xo Uo, P, WO, PO, TO) exp ((rOTO+ikOyO), 
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The counterpart of (19) is 

(36) 

(37) 

where 
kO = k*Pr-#. 

The counterparts of (25)-(27) are 

To" + $'To'- k02P - w00' = 0. 

The boundary conditions are 

uo = TO = wo = wo' = 0 (20 = 0, co). 

In the above, the Rayleigh number RaO is based on the thermal boundary-layer 
lengthscale ( v /a ) tPd  : 

After simplification, it is seen that 
RaO = Gr*. (43) 

In other words, the Rayleigh number based on the thermal scale length is equal to 
the Grashof-number based on the viscous scale length. This explains the use of the 
Grashof-number normalization for (1)-(2, 

Equations (38)-(41) are completely equivalent to (25)-(28). The principle advantage 
is that since the lengthscale used is more relevant to the thermal boundary layer, 
one may expect the critical Rayleigh number and the critical wavenumber based on 
the thermal scale (v/a)jPr-j to reach a finite limit as Pr+co. No such limits exist 
for the critical Rayleigh number and the critical wavenumber defined on the basis 
of the viscous scale (v/a)a. 

4. The asymptotic behaviour of the disturbances far from the boundary 
In the study of the stability of fluid layers bounded on one side only, the behaviour 

of the disturbances at  large distances from the boundary is of considerable interest. 
Knowledge about the rate of decay of the disturbances is useful in assessing whether 
or not they are bounded in a given sublayer. Otherwise, this semi-infinite fluid layer 
may be unconditionally unstable. Furthermore, this knowledge is useful during 
numerical computation in selecting the size of the computed domain. 

All variable coefficients in Equations (38) through (40) are multiples of the 
wavenumber ko and the base-flow solutions 8 O  and $O and their derivatives. At large 
zo, these either become constants or vary as zo or zo2. They are, therefore, relatively 
slowly varying functions. On the other hand, at  large zo, the disturbance functions 
tend to vary rather rapidly, as will be shown later. Hence, as a first approximation, 
8O' and 4O' '  can be neglected and the other coefficients assumed constant at  large zo. 
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This results in a homogeneous set of equations which has four exponentially growing 
and four exponentially decaying solutions : 

Wo = C, exp (a1 zo)  + C2 exp (a,  zo) + C3 exp (PI zo) + C, exp (Pz zo) 

+ C5 exp (yl zo) + C, exp (y, zo) + C, exp ( A ,  zo) + C,  exp ( A ,  z o ) ,  ( 44 )  

145) 

(46) 

= Cl x1 exp (a1 zO) + c2 x2exp (a,zO),  

U0 = C3 x 3  exp (P1 zO) + c, x 4  exp (P2 zO),  

where 
al, a, = + [ - $ $ k ( $ z + 4 k o 2 ) 4 ] ,  

ko2 
Pd 

ko2Rao 

a:+ -a:+ $% (A -2k02)a ; -  g k o 2 a , + k o 4 -  $O - ko2 

ko2Rao 

~ 

, (51) x 1  = 

, (52)  
Pr Pd 

$% 1 

x 2  = 

ko2 
PrS 

9o P1+k04- - 

, (53) 
P:+ z P : +  (m -2k02)P:- 2 k 0 2  Pr 

x 3  = - 
4% 

It should be pointed out that, although both A, and A, are negative when ko is less 
than Pr-f, A, does not represent a true decaying solution since it will approach zero 
as $a increases. 

In order for the functions to remain finite, the constants Cl, C,, C5 and C, in front 
of these four growing solutions must be equal to zero. Since x, and x4 are slowly 
varying functions of a,, P2, ko, Pr and $%, the decay rates of To and UO are 
proportional to exp (az zo) and exp (P2zo)  respectively. The decay rate of WO is 
determined by the slowest-decaying mode among exp (a,zO), exp (B2z0),  exp (y2z0 )  
and exp (A ,  zo) ,  and so is the decay behaviour of P. 

$O is a monotonically increasing function of zo. It varies as zo2 for Pr approaching 
infinity, and as zo for Pr around unity a t  the edge of the thermal boundary layer. 
The wavenumbers ko near the critical point for all the cases studied here are of 
the order of unity, as will be shown later. Thus the temperature disturbance To near 
the critical point should decay approximately at the rate of exp ( - $Oz0) beyond the 
thermal boundary layer. The decay rate of UO is also proportional to exp ( - $Oz0) at 
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small Pr. As Pr increases, the decay rate of Uo will shift to exp ( - kozo), and the height 
of propagation of the velocity disturbances in the streamwise direction depends on 
the wavelength at large Pr. 

In  addition to the two decaying modes discussed above, WO (as does P) has two 
more decaying modes, exp ( ye  zo) and exp ( A ,  zo).  The former is equal to exp ( -  ko zo). 
The latter exhibits similar decay behaviour to that of UO. Thus we conclude the decay 
rate of Wo is determined by the slowest-decaying mode, which is proportional to 
exp ( -  kozo) around the critical point. 

The above results clearly show that for zo $- l / k o ,  the disturbance functions decay 
at rates considerably faster than the rate of change of the coefficients of (38)-(40). 
The assumption of constant coefficients, which amounts to the lowest-order WKB 
approximation, is hence justified. 

5. The limiting case for Prandtl number approaching infinity 
At very large Pr, the thermal boundary layer is much thinner than the viscous 

boundary layer. However, since the reference lengthscale used in (32)-(40) is 
proportional to the thickness of the thermal boundary layer, the results should 
converge asymptotically to a finite limit as Pr increases. For the limiting case of 
infinite Prandtl number, the base flow can be written explicitly as 

$ O ( z 0 )  = 0.5 $ O ” ( O )  zo2 = 0.616294 zo2 for Pr+ CO, (55) 

and the perturbation equations reduce to a sixth-order eigenvalue problem 

W0” - 2k02 Wo” + ko4 Wo - ko2RaoTO = 0 for Pr -+ 00, (57 1 
TO”+$oTo’-k02P-$o’Wo = 0 for Pr-tco, (58) 

(59) 

with boundary conditions 

wo = WO’ = P = 0 (z0 = 0, C O ) ,  

This is a sixth-order eigenvalue problem because Uo is equal to zero. The decay 
behaviour of the disturbances at the edge of the thermal boundary layer can be 
obtained in a manner similar to that described in $4. The approximate solutions 
outside the thermal boundary layer are 

= c 2 x 6  exp (60) 

(61) Wo = C ,  exp (a,  zo) + C,  exp ( - kozo) + C,  zo exp ( - kozo), 
where 

a: - 2 4  ko2 + ko4 
x%= k02Ra0 

Again, the temperature disturbance decays at the rate of exp (-4: zo), and the 
velocity disturbances in the transverse and vertical directions decay a t  the rate of 
exp ( - kozo). 

Because this sixth-order system is significantly simpler than the eighth-order 
system for finite Prandtl numbers, especially with respect to the asymptotic 
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behaviour a t  large zo, the solution for this sixth-order system has been obtained and 
used as basis of comparison for the finite-Prandtl-number results. 

6. Method of solution 
The governing equations for the velocity and temperature perturbations contain 

two functions $ and 8, which represent the base-flow velocity and temperature 
distribution. These functions cannot be expressed analytically and must be determined 
either from tabulations, or, more conveniently and accurately, computed as needed, 
as is done here. Accordingly, a numerical solution method was used. 

The method adopted was to employ the shooting method for a finite domain and 
then to seek the asymptotic value of the eigenvalue as the upper limit of the domain 
approaches infinity. The details of the implementation of the calculation are discussed 
as follows. 

In brief, for a given Pr and E O ,  trial values for the eigenvalue RaO and for three 
boundary conditions, Uo'(0),  wO'"(0) and T'"(O) ,  were assigned. In addition, since the 
equations and the boundary conditions are homogeneous, the boundary condition 
WO"(0) was assigned arbitrarily. These, together with the four known boundary 
conditions at zo = 0, as given in (41), permit a trial solution to be obtained as an initial 
value problem employing a fourth-order Runge-Kutta integration. A t  a sufficiently 
high value of zo = zp, the quantities UO(zo), W ' ( zo ) ,  WO(zo), and T(zo) were evaluated. 
If the trial solutions were correct (meaning if the trial values RaO and UO'(O) ,  TO'(O),  
WO'"(0) were correct), UO(zp), WO(zf"), w O ' ( z ~ ) ,  and To($) should vanish. If the latter 
four quantities did not vanish, a set of four new trial values were determined 
according to standard Newton-Raphson scheme. 

The Newton-Raphson iteration scheme converges rapidly, but has a small circle 
of convergence. In order to ensure that good trial values are used, the computations 
proceeded according to a systematic extrapolation scheme. A t  first, a calculation was 
performed for a finite layer that was sufficiently thin relative to the intrinsic 
boundary-layer thickness so that the problem approached that of the classical 
Rayleigh-BBnard problem. Solutions for the latter were then used to obtain the four 
trial values. After the convergence of the iteration, the computed layer depth was 
systematically increased until a sufficiently large value of zf" was reached. To 
determine the asymptotic value of the critical Rayleigh number RaO for zf" + 00, zf" 
was increased by a fixed increment Azf" systematically, 

0 zf, i+l = zf", i + Az~" ; 

the change of Raf is plotted against zf", as shown in figure 2. The vertical coordinate 
in figure 2 is the quantity (RaO, - RaO,+,)/(RaO, A@). It is seen that the plot approximates 
a straight line, indicating that Ra4 is a decreasing geometrical sequence. Accordingly, 
the asymptotic value RaO can be computed by the formula 

m 

j - 1  

m 
x RaO, + X (RaO, - RaO,-,) rj 

I-1 

r(RaO, - RaO,-,) 
1 - r  

x RaO,+ 9 

where RaO, denotes the value of the eigenvalue for the largest zp computed. The ratio 
r is determined from the slope of the plot in figure 2. 
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Pr= lo4 and- 

4 8 12 16 

ZOf 

FIGURE 2. Method for determining the asymptotic solution (see text for discussion). 

Typically, the computing depth employed was about 1&15 times the thermal scale 
(i.e. z: = 10-15), with 2 0 M O O  z-increments for wave-numbers around the critical 
wavenumber. Larger computing depth was employed for smaller-wavenumber cases. 
The integration arithmetic was a fourth-order Runge-Kutta method. 

The obtained results have been compared with the results calculated by a matching 
method developed by Nachtsheim (1963) in his study of the thermal instability of 
natural-convection boundary layers. In this matching method, the results of the inner 
numerical shooting were forced to match the outer analytical solutions (described in 
$5) at a finite depth. The result of this comparison for Pr = 1, ko = 0.8, is shown 
in figure 3. The dashed line in this figure represents the calculated Rae for different 
computing depths z:, while the solid line represents the RaO obtained from the 
matching method a t  different matching distances. The matching method shows a 
faster convergence ; however, the outer boundary conditions for the numerical 
shooting in the matching method are more complicated than that encountered in the 
extrapolation method. Consequently, there was little saving in computer time and 
considerable increase in program complexity. Since the two methods provide 
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FIGURE 3. Comparison between the extrapolation method and the matching method 
for Pr = 1, ko = 0.8. 

comparable accuracy, the extrapolation scheme was used for most of the 
computations. 

7. Results and discussion 
The calculated critical conditions and neutral stability curves for various Prandtl 

numbers are shown in table 1 and figures 4 and 5. It is seen from figure 4 that the 
critical wavenumber based on the viscous scale increases with increasing Pr, reflecting 
the gradual decrease in the thickness of the thermal boundary layer with increasing 
Pr . 

Although the thermal scale length (v/a)l (Pr-4) employed in $3 was derived from 
large-Prandtl-number considerations, it is interesting to note that it is also a very 
convenient lengthscale to use for moderate-Prandtl-number results. This is shown in 
figure 5, where the critical Rayleigh number is plotted against ko, the dimensionless 
wavenumber based on the thermal scale. Note that the minimum wavenumber kg,,, 
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Gr * 

k* 

FIGURE 4. The critical Grashof number against the wavenumber k*, both based on the viscous 
scale length. 

depends only weakly on Pr, and the familiar fingerprint-like neutral stability curves 
are obtained. The reason for this, of course, is that  the thermal-instability problem 
is essentially dependent on the thermal boundary-layer thickness and only weakly 
on the velocity distribution of the boundary layer. Since the thermal boundary layer 
thickness is essentially proportional to PrA for 1 < Pr < CO, the Pr-4 dependence in 
the definition of the thermal scale length accounts approximately for the Prandtl- 
number dependence of the wavenumber. 

The eigenfunctions Wo, Vo, Uo and To are shown in figures 6-8. Again, i t  is seen 
that the use of the stretched variable zo tends to clarify the Prandtl-number scaling 
relationship. Note, however, that  there should not be too much significance attached 
to the magnitudes of Wo, Vo,  Uo and TO since the system of equations is homogeneous 
and the amplitude is essentially arbitrary. The magnitudes of UO and Vo are relative 
to  that of WO. 

From figures 7 and 8 the influence of the wavenumber on the disturbances 
propagation in the vertical direction may be observed clearly. As was shown 
analytically in $4, the decay rate of TO is always proportional to exp ( -$Oz0) beyond 
the thermal boundary layer. The temperature disturbance is essentially confined 
within the thermal boundary layer since $O increases with zo, and thus exp ( -  $Oz0) 
represents a very fast decaying solution with respect to zo. Also, i t  can be seen from 
figures 6 and 7 that  the decay rate of TO for Pr = lo4 is greater than that for Pr = 1 ,  
since a t  the edge of the thermal boundary layer, q 5 O  is proportional to  zo2 at large Pr, 
but only proportional to  zo a t  small Pr. The streamwise velocity disturbance shows 
the same decay behaviour at small Pr, as discussed above. At Pr = lo4, the decay 
rate of Uo should be proportional t o  exp ( - kozo).  However, the ratio of the magnitude 
of Uo to that  of Wo decreases as Pr-4. The shift in decay rate of Uo at large Pr is 
difficult to observe clearly. Different values of ko will change only the decay rate of 
Wo and Vo,  and hence the dimensions of the convection cells. The smaller the 
wavenumber, the taller and wider the convection cells should be. 

It is interesting to  relate the present results to  the results of Rayleigh-BBnard 



Thermal instability of two-dimensional stagnation $ow 

200 

100- 

61 

I I I 1 

0.8 I I I I 

- 

I 
I 

-0.4 I - ' l v "  

-0.8 I I I I 

ko 

FIGURE 5. The critical Rayleigh number versus the wavenumber ko, both based on the thermal 
scale length. 
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FIGURE 7. The eigenfunctions for Pr = lo4; ko = 0.826650. 

ZO 

FIGURE 8. The eigenfunctions for Pr = 1 ; ko = 0.2. 

instability without flow. Examination of the eigenfunctions presented in figures 6, 7 
and 8 suggest that To and WD are a t  their maximums between zo = 1-2. Thus, 
semiquantitatively, the disturbances in the fluid within 1-2 thermal scale lengths 
somewhat resemble those in the lower half of the classical Rayleigh-BBnard problem. 
Accordingly, one would expect that the critical Rayleigh number should be of the 
order of +( = ($)3) of that of the Rayleigh-BBnard problem, or about 27-214. Because 
of the third-power dependence of the Rayleigh number on the length-scale, this type 
of estimate cannot be expected to be quantitatively accurate. The fact that our 
computed Rayleigh-number range of 37-62 was not far from this estimate attests to 
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the close relationship of the thermal instability of the boundary layers to  that of the 
basic Rayleigh-BBnard problem. 

Although there are a number of published experimental studies with information 
on the impingement region of thermal plumes, including those with clearly two- 
dimensional geometry, there is not enough information in the papers to facilitate a 
comparison with the present analysis. It is hoped that this study will stimulate 
interest in this area. 

One interesting interpretation of the results can be made as follows. Since the 
lengthscale in the definition of  Rao is essentially a measure of the thermal boundary- 
layer thickness for high and moderate Prandtl numbers, the existence of the critical 
Rayleigh number suggests that  there exists a maximum thermal boundary-layer 
thickness above which the boundary layer is thermally unstable. This, in turn, implies 
that  there exists a minimum heat transfer coefficient below which the boundary layer 
is unstable. Making use of the fact that  Oo’(0) = -0.643 for Pr 9 1,  i t  can be shown 
that the minimum heat transfer coefficient hmi, is given by the expression 

hmin = 0.1641[-] SPAt f K ,  

av 

where K is the thermal conductivity, 

would clearly be in order. 
Experimental verification and further theoretical exploration of this phenomenon 
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